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Abstract 

This work evaluates the efficiency of Random Forest (RF) regression for predicting water quality indicators and investigates factors 

affecting water quality in 11 watersheds in Virginia, District of Columbia, and Maryland. Ten years of daily water quality data along 

with hydro-meteorological information (such as precipitation) and watershed physiology and characteristics (e.g., size, soil type, land 

use) are used to predict dissolved oxygen (DO), specific conductivity (K), and turbidity (Tu) across the selected watersheds. The RF 

regression model is developed for six scenarios, with an increasing number of predictors introduced in each scenario. The first sce-

nario contains the smallest amount of information (water quality indicators DO, K and Tu), while scenario 6 contains all the available 

variables. The RF model is evaluated based on three statistical metrics: the relative root mean square error, the correlation coefficient, 

and the percentage of variance explained. In addition, the degree of importance for each predictor is used to rank their importance 

within each scenario. The model shows excellent performance for DO as the predicted variable. The model predicting K slightly out-

performs the one predicting Tu. Scenario 4 (built based on water quality indicators, hydro-meteorological data, watershed physiology 

and land cover information) provided the best tradeoff between performance and efficiency (quantified in terms of the amount of 

information needed to develop the model). In conclusion, based on the RF model, land cover plays a significant role in predicting wa-

ter quality indicators. In addition, the developed RF regression model is adaptable to watersheds in this region over a range of climates. 
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1. Introduction 

Monitoring surface water quality provides important information that can be used for actions to sustain eco-

logical systems, as well as to protect human health and livelihoods. Assessing temporal and spatial changes in 

water quality is fundamental for controlling and preventing water pollution. Several approaches have been in-

vestigated over the years to analyze such changes. Traditional methods based on statistical and numerical 

models are structurally complex, costly, time consuming, and require substantial data and detailed information 

(Jadhav et al. 2015). In addition, traditional models are not capable of reflecting the sophisticated interaction 

between chemical, physical, and biological properties of water quality (Chen et al. 2018). Furthermore, tradi-

tional models often require data pre-processing and assumptions regarding statistical distribution of data, 

which is usually unknown (Najah et al. 2019). 



Recent developments in computer science, especially in Artificial Intelligence (AI), overcome most limitations 

of traditional modeling and has shown potential for handling water quality data (Tiyasha, Yaseen 2020). Ma-

chine learning (ML) is a branch of AI that enables computers to learn without explicit programming (Mitchell 

2013). ML has been widely used in many fields, including medicine (Long et al. 1993), engineering (Hulten 

2018), finance (Mezrich 1994), ecology (Kijewski et al. 2019), as well as environmental and water resources 

engineering (Chen et al. 2018; Norouzi, Moghaddam 2020). One of the powerful features of ML is its capabil-

ity to identify non-linear and complex relationships between input and output data (Najah et al. 2019). Several 

ML models have been applied to water quality studies over the past two decades, including neural networks 

(Yu et al. 2020), artificial neural networks (Jeong et al. 2001; Amiri, Nakane 2009; Imani et al. 2021), adaptive 

neuro-fuzzy inference systems (Najah et al. 2019), support vector regression models (Wang et al. 2017), and 

rough set theory (Zavareh, Maggioni 2018). Some ML algorithms, including factor analysis (Akoto, Abankwa 

2014), principal component analysis (PCA) and granger causality (Zavareh et al. 2021), have also been ex-

plored for data dimension reduction and to identify causal relationships. However, none of these techniques is 

perfect. For example, artificial neural networks require large amounts of data for training and often overfit 

data (Tiyasha, Yaseen 2020). On the other hand, approaches like rough set and fuzzy set theories cannot han-

dle and/or process quantitative data (Dubois, Prade 1992). Data dimension reduction techniques, like PCA, 

can make it difficult to interpret principal components (Karamizadeh et al. 2013). 

Within ML forecasting models, RF is appealing because (Díaz-Uriarte, Alvarez de Andrés 2006; Boulesteix et 

al. 2012): (a) RF handles quantitative as well as qualitative data; (b) it does not overfit data; (c) its predictive 

performance is high compared to other modeling approaches; (d) it can directly process high dimensional data 

without dimensional reduction; (e) it does not need pre-processing; and (f) it can capture non-linear depend-

encies between predictor and predicted variables. 

RF has been employed in water resources science and engineering in recent years (Parkhurst et al. 2005; Chen 

et al. 2017; Tyralis et al. 2019; Li et al. 2020). For instance, RF models have proven successful in generating 

groundwater potential maps (Golkarian et al. 2018; Sameen et al. 2019), stream flow forecasting (Papa-

charalampous, Tyralis 2018), predicting groundwater level (Wang et al. 2018), analyzing effects of urbanization 

on hydrological variables (Saadi et al. 2019), urban water consumption forecasting (Chen et al. 2017), as well as 

for predicting water inrush rate in coal mines (Zhao et al. 2018) and soil infiltration rate (Singh et al. 2017). RF 

is particularly suitable when non-linear relationships exist, which is the case for the majority of processes in 

water science (Kijewski et al. 2019; Tyralis et al. 2019). 

RF has also become popular for predicting water quality indicators (Papacharalampous, Tyralis 2018). For in-

stance, Devi (2019) investigated the application of an RF classification model to water quality prediction in 

Kadapa district, India. The study examined water quality indicators, including pH, total dissolved solids, elec-



trical conductivity, and chloride concentration to build a Water Quality Index (WQI) for drinking water as-

sessment, revealing that total dissolved solids was the most important variable affecting WQI, whereas pH 

was least important. The model classified drinking water in the region with 94% accuracy and a 6.3% error 

rate. Another study investigated the application of an RF classification model on water quality (Tesoriero et al. 

2017) to predict redox-sensitive contaminant concentration (nitrate, iron, and arsenic) in groundwater in 

northeastern Wisconsin. Their RF classification showed a high potential for assessing aquifer and stream vul-

nerability at regional and national scales. Furthermore, Wang et al. (2021) developed an RF regression model 

to predict water quality distribution in China’s Taihu Lake basin. Their model used watershed features and cli-

mate variables as predictor variables of three water quality parameters, permanganate index (CODMn), total 

phosphorus (TP), and total nitrogen (TN). The RF models showed that TN concentration was affected by 

agricultural non-point sources, while the CODMn and TP were impacted by agricultural and domestic 

sources. 

The present work builds upon these past studies and develops an RF regression model to assess water quality 

indicators in selected watersheds within Chesapeake Bay basin in the Eastern United States. Different scenar-

ios are proposed to evaluate the effect of different groups of predictors on model performance and to rank 

their importance in estimating several major water quality indicators: dissolved oxygen concentration, specific 

conductivity, and turbidity. Finally, an independent watershed is used to assess the transferability of the pro-

posed RF model to other watersheds having similar climate, size, and topography. 

2. Study area and dataset 

Eleven watersheds across the District of Columbia, Maryland, and Virginia (known as the DMV region) were 

selected for this study. The DMV region is particularly vulnerable to hydro-meteorological hazards, which are 

exacerbated by sea level rise because of its vicinity to the coast (Solakian et al. 2020). In addition, excessive 

algal growth, poor water clarity, and low dissolved oxygen related to eutrophication have been issues in the 

Chesapeake Bay area for the past few years (Zhang et al. 2018). Thus, researchers, local organizations, and 

governmental agencies have increased their efforts to collect and interpret water quality data to promote the 

health of the DMV watersheds that feed into the bay (Zhang et al. 2018). 

Data for this work are extracted from 11 United States Geological Survey (USGS) stations located at the out-

let of each watershed, as shown in Figure 1. These data contain water quality indicators, including dissolved 

oxygen (DO) in milligram per liter (mg l-1), specific conductivity (K) in microsiemens per centimeter at 25 de-

grees Celsius (µS cm-1 at 25°C), turbidity (Tu) in Formazin Nephelometric Units (FNU), and water tempera-

ture (WT) in degrees Celsius (°C). Additional information is also considered here, including precipitation, dis-

charge, air temperature, watershed size, and length of rivers running across watersheds, along with watershed 

land cover, soil type, and livestock count. These data are mainly extracted from USGS, National Aeronautics 



and Space Administration (NASA), North America Land Data Assimilation System (NLDAS), and National 

Land Cover Database (NLCD). For more information regarding the data and the watersheds, we refer the 

reader to Zavareh et al. (2021). 

 
Fig. 1. Location of the 11 watersheds selected for this study across the DMV region. 

Table 1 displays watershed characteristics, including watershed physiology (size of watershed and total length 

of rivers in a watershed), land cover, soil type, and livestock head count for all watersheds in this study. Water-

sheds 1-10 are used for developing the RF model, whereas Scotts Level Branch (watershed 11) is used as an 

independent watershed for assessing model performance in the validation phase of this study. 



Watershed size varies between 7 and 169 km2, while the total length of rivers ranges between 5 and 132 km. 

Land cover is summarized into five main groups, including wetland, developed, barren, forest, shrubland, and 

reported as percentages. Most watersheds are highly urbanized, with more than 50% of the total area being 

developed, except for watersheds 4 and 10. Watershed 4 is least developed, with only 8% of its total area clas-

sified as developed; watershed 6 is the most developed, with 87% of the total area classified as developed. 

Four watersheds (1, 4, 5, and 6) are mainly characterized by soil type B with moderate infiltration, whereas 

there is a prevalence of soil type C with slow infiltration in all other watersheds. Soil type is A least common 

in all watersheds. Land use and soil type affect infiltration rates, stream flow, and stormwater runoff (carrying 

contaminants), and can be particularly useful for interpreting relationships among water quality indicators and 

environmental characteristics (Zavareh et al. 2021). 

The minimum and maximum livestock head counts were 2 and 885, respectively. As shown in Table 1, even 

highly urbanized watersheds contain livestock (e.g., watershed 6 is the most urbanized watershed and has a 

headcount of 89 livestock). The livestock head count is included because the manure and waste from concen-

trated animal feeding operations have been a long-standing concern in contamination of water runoff as a po-

tential non-point source of water quality degradation (Burkholder et al. 2007; Dufour et al. 2012). 

Table 1. Characteristics of watersheds in this study. Watershed area and total length of rivers are in km and km2, respec-

tively, whereas land use and soil type are in percent. 

Watershed features 1 2 3 4 5 6 7 8 9 10 11 

Area 169 149 62.0 37.0 34.0 17.0 10.0 10.0 10.0 7.00 9.00 

Total length of rivers 103 132 56.0 30.2 23.9 9.30 9.20 10.0 8.70 5.00 8.20 

Wetland, open water 2.10 4.70 2.70 6.90 2.70 0.10 0.10 1.00 2.30 3.80 0.00 

Developed 69.2 53.5 74.2 7.90 61.1 87.8 85.4 86.0 70.6 44.0 82.3 

Barren 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 00.0 

Forest 20.9 38.9 22.8 77.6 29.1 11.7 14.3 11.6 27.1 51.0 13.8 

Shrubland, Herbaceous, 
Planted 

7.50 2.80 0.40 7.40 7.00 0.30 0.20 1.30 0.10 0.80 3.90 

Soil Type A 0.70 2.90 1.20 0.00 1.00 0.00 0.00 0.00 0.70 4.00 0.00 

Soil Type B 73.6 29.9 18.1 99.8 76.2 81.2 6.00 4.30 20.5 29.4 51.0 

Soil Type C 16.0 66.7 80.7 0.20 14.5 11.1 93.6 89.7 78.9 66.5 36.7 

Soil Type D 9.8 0.50 0.10 0.00 8.30 7.70 0.30 6.00 0.00 0.00 12.2 

Livestock count 885 152 46.0 65.0 185 89.0 2.00 8.00 5.00 5.00 75.0 

3. Methodology 

3.1. The Random Forest Model 

RF is an ensemble method, first developed by Breiman (2001), that uses multiple decision tree algorithms to 

produce repeated predictions of the same phenomenon. The ensemble combines predictions from multiple 



learning models to obtain better accuracy than the individual models (Rokach 2010). One of the advantages of 

the RF method is that there is no need to pre-process or normalize data. 

RF can be used for classification purposes and as a regression method depending on the nature of the de-

pendent predicted variable (Tyralis et al. 2019). In regression models, the dependent variable is continuous 

(quantitative), whereas in classification algorithms it is categorical. RF models for regression are formed by 

growing trees depending on numerical values as opposed to class labels (Breiman 2001). In the present case, 

since the nature of predicted variables is continuous, we use an RF regression model. In this approach, RF 

grows a forest from many regression trees. A Regression Tree (RT) is a set of restrictions or conditions which 

are hierarchically structured, and which are successively applied from a root to a terminal node or leaf of the 

tree (Breiman et al. 1993; Zabihi et al. 2016). 

The first step in developing an RF model is bootstrapping, in which data is randomly sampled from the entire 

dataset with replacement (i.e., data can be picked more than once). Each RT is grown in a bootstrapped sub-

sample of a training dataset, which is known as bagging (Lagomarsino et al. 2017). The remaining data are 

called Out Of Bag (OOB), and they are used to estimate the prediction error and the importance of the varia-

bles (Han et al. 2016). Predictions based on the OOB set prevent overfitting (Lagomarsino et al. 2017). Over-

fitting may also result from extremely large trees, where lower branches introduce modeling noise. To avoid 

overfitting, the RT needs to be pruned. Pruning trees generates a simpler tree by deleting redundant variables. 

The second step is feature (variable) selection. In order to determine a split at each node in a decision tree, 

variables are randomly selected as features (Breiman 2001). Feature selection helps to build uncorrelated trees. 

Additional, feature selection introduces an extra layer of randomness to the model. The third step is to repeat 

steps 1 and 2 to build a forest with many trees, with each tree trained with different data. Consequently, two 

important parameters need to be selected in every RF model: the number of trees and the number of splits at 

each node. 

In this work, the RF model is developed based on data from 10 watersheds across the study area to estimate 

three water quality indicators: DO, K, and Tu. When one indicator is assigned to be the predicted variable, the 

other two are used as predictor variables. From the original data, 70% is dedicated to train the model, and the 

remaining 30% is used for testing (verification). The model is then validated using an independent watershed, 

i.e., Scotts Level Branch. 

The RF model built based on all information (water quality indicators in addition to information listed in Ta-

ble 1) is trained with different numbers of trees: 50, 100, 200, 300, 400, 500, and 600 (Fig. 2). The optimal 

number of trees is chosen based on the value minimizing the relative Root Mean Square Error (rRMSE), 

which is a measure of the relative misfit between modeled variables (DO, K, and Tu) and the corresponding 

observed values. This study uses 500 trees, the value at about which rRMSE reaches a plateau. This estimate is 



consistent with the default values used in prior studies (Boulesteix et al. 2012; Devi 2019; Saadi et al. 2019; Al-

Abadi et al. 2021). 

 
Fig. 2. Values of rRMSE for modeled DO, K, and Tu with respect to their corresponding observed values as a function 

of the number of trees used in the RF regression model. 

Another parameter to calibrate when building an RF model is the number of variables at each split (mtry). For 

a regression RF model, mtry is suggested to be approximately one third of the number of variables in the da-

taset (Díaz-Uriarte, Alvarez de Andrés 2006; Boulesteix et al. 2012; Fox et al. 2020). This value was chosen for 

the present study. Here, mtry values are selected based on the number of variables in each of the six scenarios 

described in the Section 3.2. 

3.2. Model scenarios and performance evaluation 

The RF is developed for six scenarios, shown in Table 2. The number of variables increases moving from sce-

nario 1 to scenario 6. The first scenario contains only four water quality indicators, i.e., DO, K, Tu, and WT. 

In the second scenario, hydrologic characteristics of the watersheds, namely precipitation, discharge, and tem-

perature, are added to the variables considered in scenario 1. In the third scenario, watershed physiology (wa-

tershed area and the total length of rivers in each watershed) is included. Land cover information is included 

in scenario 4, soil type is added to scenario 5, and livestock head count in each watershed is incorporated in 

scenario 6. As mentioned previously, the number of mtry for each scenario is one third of the number of varia-

bles in each scenario: mtry is 2 for scenarios 1 and 2, 3 for scenarios 3, 4 for scenario 4, and 6 for scenarios 5 

and 6. 



Table 2. Scenarios and number of predictor variables. 

 
Scenario 

1 2 3 4 5 6 

Water quality (DO, K, Tu, WT) X X X X X X 

Hydrology 
(precipitation, discharge, temperature) 

 X X X X X 

Watershed physiology 
(watershed area and length of rivers) 

  X X X X 

Land cover information    X X X 

Soil type information     X X 

Livestock headcount      X 

Total number of variables 3 6 8 13 17 18 

Three statistical metrics are used to analyze model performance of each scenario: correlation coefficient (R ) , 

relative Root Mean Square Error (rRMSE) , and percentage variance explained (%Var). 

The correlation coefficient between observed and predicted values is: 

𝑅 =  
∑ (𝑉𝑖 − 𝑉)(𝑃𝑖 − 𝑃)𝑛

𝑖=1

√∑ (𝑉𝑖 − 𝑉)
2

∑ (𝑃𝑖 − 𝑃)
2

𝑛
𝑖=1

𝑛
𝑖=1

⁄    (1) 

where: Vi are the measured values of variables, Pi are the predicted variable values, n is the number of varia-

bles in testing data, and �̅� and �̅� are the means of measured data variables and model predicted data, respec-

tively (Wu et al. 2020). 

The RMSE indicates the overall misfit between the modeled and observed variables (Yu et al. 2020). This is a 

common metric to evaluate the performance of prediction results. A perfect prediction model would have 

zero RMSE. Since the errors are squared before they are averaged, it is very sensitive to large errors in the 

measured data (Wang et al. 2018). As a result, this study uses rRMSE to assess model misfit. Its calculation 

formula is: 

𝑟𝑅𝑀𝑆𝐸 =   
√

1

𝑛
∑ (𝑃𝑖

𝑛
𝑖=1 − 𝑉𝑖)2

�̅�
⁄

  (2) 

where: Vi are variables from measured testing data, Pi are predicted values of a variable, n is the number of 

variables in testing data, and �̅� and �̅� are the mean of variables in testing data and model predicted data, re-

spectively (Wu et al. 2020). 

The %Var is a measure to show how well out-of-bag predictions explain the predicted variance of the training 

set. The percent variation is the explained variation divided by total variation. In other words: 



% 𝑉𝑎𝑟 =  
∑ (𝑜𝑖 −𝑛

i=1  �̅�) (𝑏𝑖 − �̅�)
∑ (𝑜𝑖 − �̅�𝑛

i=1 ) + (𝑏𝑖 − �̅�)
⁄         (3) 

where: 𝑜𝑖 is a variable from OOB data, 𝑏𝑖 is a variable from bootstrap data, and  �̅� and �̅� are the mean of 

OOB and bootstrap data. 

The importance measure is used to estimate how much the prediction error increases when OOB data for that 

variable are permuted, while all others are unchanged (Liaw, Wiener 2002). The importance measures are 

computed to rank all predictors: if the importance measure of a variable is lower relative to others, that varia-

ble contributes minimally to the prediction process and can be potentially excluded. The importance measure 

is computed as the Mean Decrease in Accuracy (MDA ) : 

𝑀𝐷𝐴 =  
1

𝑛𝑡𝑟𝑒𝑒
∑ (𝐸𝑃𝑡𝑗 − 𝐸𝑡𝑗 )

𝑛𝑡𝑟𝑒𝑒
𝑡=1         (4) 

where: ntree is the number of trees, 𝐸𝑃𝑡𝑗 is the OOB error on tree 𝑡 after permuting the values of 𝑋𝑗, and 

𝐸𝑡𝑗 is the OOB error on the tree 𝑡 before permuting the value of 𝑋𝑗 (Han et al. 2016). Permutation-based im-

portance is crucial since it avoids allocating high importance to features that may not be predictive for unseen 

data due to overfitting (Pedregosa et al. 2011). 

4. Results 

4.1. RF Model Evaluation 

The three-performance metrics (R, %Var, and rRMSE) are calculated for each scenario when either DO, K, 

or Tu, is the predicted variable (Fig. 3). The best performance in terms of all three statistics is observed when 

estimating DO, based on the other water quality indicators. Minimal changes are observed when more predic-

tors are included in the RF model, with slight improvement in %Var and rRMSE when moving from scenario 

1 to scenario 2, which added information about watershed hydrology. The effect of urbanization was also sig-

nificant when DO was granger caused by K and Tu, as shown by Zavareh et al. (2021). 

When predicating K and Tu, R values improve when moving to more complex scenarios. This is particularly 

evident when estimating Tu after hydrological information is added in scenario 2. This can be associated with 

K and Tu being strongly affected by precipitation and discharge. 

In terms of %Var, increases of 20% and 45% are shown for K and Tu, respectively, when information on wa-

tershed hydrology is included. In addition, increases of 12% and 10% for K and Tu are detected when water-

shed physiology is added to scenario 2. This suggests that hydrological information and watershed physiology 

highly improve prediction of data variance. However, adding watershed characteristics of land cover or soil 

type does not improve %Var.  



A slight improvement in the rRMSE of DO is observed when hydrologic information is added to the model. 

When K (Tu) is the predicted variable, rRMSE decreases by more than 50% (140%) when watershed physiol-

ogy and land cover are added to the model. 

 
Fig. 3. Correlation coefficient (top), Explained Variance (middle), and rRMSE (bottom) of DO, K, and Tu with respect 

to their corresponding observed values for the model scenarios in Table 2. 

Based on these results, the model based on scenario 4, which considers water quality, hydrologic information, 

watershed size, length of rivers, and land cover, outperforms the other models when considering both the sta-

tistical metrics shown in Figure 2 and model efficiency, i.e., the amount of required information. Thus, adding 

information regarding soil type and livestock count does not improve R, %Var, and/or rRMSE enough to 

justify the collection of these data, which can be time consuming and expensive in an operational setting. As a 

result, scenario 4 is selected for further investigation and recommended as the best compromise between per-

formance and efficiency. 

4.2. Predictor importance 

The importance measures (MDA ) for each predicted variable are calculated for every scenario. Higher MDA 

values indicate when a predictor variable plays a more important role in estimating the predicted variable. In 



other words, if the accuracy of the RF model decreases due to exclusion of a certain predictor, the predictor is 

critical in developing the RF model. 

Figure 4 shows the MDA values for scenario 4. When predicting DO, WT is the most important variable, fol-

lowed by discharge and developed area. It is well known that DO and WT are highly correlated (Galloway 

2002). A higher volume of water moves faster and increases the flow turbulence, which results in more oxy-

gen dissolving in the water (Kelly 1997). Also, urbanization results in less impervious surfaces, which increase 

runoff and can elevate the amount of organic matter in water. Consequently, urbanization alters DO concen-

tration due to organic matter decomposition (Smith et al. 1992). 

Precipitation is the most important variable for predicting K. This is expected as precipitation increases runoff 

that can carry saline-polluted water, resulting in higher K. In addition, it is important to note that discharge, 

WT, and T are also highly predictive of K. This is consistent with findings from Zavareh et al. (2021). The 

most important watershed characteristic for predicting K is the area of developed land (urbanization). Like 

precipitation, urbanization contributes to K, as it decreases the possibility of salinity absorption into the soil 

and increases salinity in surface water. 

Discharge is the most important predictor of Tu. Higher water volume increases the speed of its movement, 

stirring up the water and increasing turbidity (Dalwadi, Padole 2019). The levels of K and WT are the second 

and third most important variables predicting Tu. This is in line with past studies that have shown strong 

Granger causality relationships between WT (cause) and Tu (effect) (Zavareh et al. 2021). 

In summary, discharge plays a very important role when predicting DO, K, and Tu. Additionally, the volume 

of discharge is directly affected by land cover. If the land cover of a watershed changes, the overall water yield 

(runoff) of the watershed changes, which affects water quality (Kumar et al. 2018). This explains why scenario 

4 outperforms scenarios 1-3 (which lack information regarding land use, which may have a critical effect on 

water quality). 

 
Fig. 4. Mean decrease in accuracy for predictors of the RF regression model built for Scenario 4 for predicting a) DO, b) 

K, and c) Tu. 



4.3. Model validation 

In order to assess the applicability of the RF model, we evaluate its performance across an independent water-

shed, Scotts Level Branch, for which four months of data are available (January 2020 to April 2020). Infor-

mation on DO was unavailable for this watershed. 

Figure 5 shows time series of predicted and corresponding measured values of K and Tu for Scotts Level 

Branch. Model estimates are presented for the 6 scenarios as an ensemble envelope bounded by the minimum 

and maximum values obtained across all 6 models. 

Observed K values fall within the model ensemble bounds, showing that the model encapsulates the actual 

values of K and well reproduces its variability over time. However, the model identifies a peak in late February 

that was not captured by in-situ measurements. This can be either due to an overestimation by the model dur-

ing a specific precipitation event, or it could be an event missed by the observations. Similarly, some peaks in 

modeled Tu are not present in the observed time series. Nevertheless, Tu variability during the period of in-

terest is well captured within the model envelope. 

 
Fig. 5. Time series of modeled and observed K and Tu for Scotts Level Branch. The ensemble of modeled values is 

shown as a shaded area enveloped between the minimum and maximum values obtained from the models built on the 6 

scenarios. 

Table 3 shows the results for the three statistical metrics used in this study to evaluate the RF model perfor-

mance for K and Tu in the validation watershed for the 6 scenarios. Correlation coefficients more than dou-

bled when adding hydrology information to scenario 1 for both K and Tu. The R value improves when more 

information is added to the model, and as in the training phase, it increases sharply when hydrology infor-

mation is included in the model (i.e., moving from scenario 1 to 2). The %Var values for K and Tu more than 

doubled and tripled when hydrology and watershed physiology information are added (i.e., scenario 1 vs. sce-

nario 3). Conversely, the results of rRMSE do not consistently increase or decrease as more information is 



added to the model. However, scenario 4 shows relatively low rRMSE compared to other scenarios. In gen-

eral, when comparing the three statistical metrics, scenario 4 shows the best performance for predicting K and 

Tu. This is in line with the results for the RF model, as previously discussed. 

Table 3. Correlation coefficient (R ) , Explained Variance (%Var), and rRMSE for predicted and observed K and Tu val-

ues in the Scotts Level Branch watershed. 

Scenario 
K Tu 

R %Var rRMSE R %Var rRMSE 

1 0.17 0.27 0.51 0.18 0.12 0.53 

2 0.57 0.46 0.43 0.79 0.45 0.89 

3 0.58 0.64 0.80 0.9 0.56 0.48 

4 0.52 0.65 0.41 0.94 0.58 0.45 

5 0.54 0.65 0.37 0.89 0.51 0.60 

6 0.50 0.64 0.53 0.90 0.60 1.01 

Scatterplots of actual and predicted K and Tu for scenario 4 are presented in Figure 6. Although the disper-

sion around the 1:1 line is consistent, the modeled K values are overall well aligned to K observed in the wa-

tershed during the 4-month validation period, with a correlation coefficient of 0.52. In terms of Tu, the model 

well reproduces large Tu values (correlation coefficient of 0.94), but overestimates observed values of Tu be-

low 10 FNU. This can be potentially improved by considering a larger sample size and verifying the model for 

a longer time series and/or in a different watershed. 

 
Fig. 6. Scatterplots of observed and predicted K (left) and Tu (right) in the Scotts Level Branch watershed. 

5. Conclusions 

This study investigates the efficiency of RF regression for predicting water quality indicators (DO, K, and Tu) 

and provides insight into factors affecting stream water quality. The RF models are built based on information 



from 10 watersheds in the DMV region, with one independent watershed used for assessing model applicabil-

ity. The RF model performance is analyzed based on three statistical metrics, R, %Var, and rRMSE. In addi-

tion, degree of importance is calculated for each scenario to rank relative contribution of predictors in estimat-

ing water quality. 

The RF models to predict DO show the highest performance (average R = 0.99, average %Var = 0.98, aver-

age rRMSE = 0.11) when modeling the 10 watersheds. The RF models predicting K (average R = 0.75, aver-

age %Var = 0.57, and average rRMSE = 0.82) slightly outperform the models that predict Tu (average R = 

0.69, average %Var = 0.50, and average rRMSE = 1.62). However, when comparing the scenario perfor-

mances for DO, K, and TU and taking into account the amount of information needed for developing each 

model, scenario 4 is the most efficient option. This highlights the importance of land cover information in 

predicting water quality. 

The most important measure for predicting DO is WT, which is expected due to their strong correlation (Gal-

loway 2002). The second and third most important measures of DO are discharge and urbanization. In com-

parison, precipitation and discharge are the most important measures for predicting K. Among all watershed 

characteristics, urbanization plays the most important role in predicting K, as it results in greater area of im-

pervious land, which increases runoff volume and the concentration of total dissolved solids (Kumar et al. 

2018). When predicting Tu, discharge is the most important measure, as more discharge yields more sus-

pended solids, which increases turbidity. The second most important measure is K, as increased dissolved sol-

ids concentration contributes to higher Tu.  

An independent watershed is used to assess the performance of the developed models and evaluate their ap-

plicability to a different region. Model performance is similar to that observed in the training phase, with sce-

nario 4 (which includes water quality data, hydrology information, watershed size, length of rivers in water-

sheds, and land cover information) outperforming other scenarios. However, longer time series and different 

watersheds should be considered to verify these results. 

In conclusion, along with watershed physiology and hydrological characteristics, urbanization plays an im-

portant role in predicting DO, K, and Tu. In general, land cover highly impacts the production and transpor-

tation of sediments and organic matter (Inserillo et al. 2017). This emphasizes the vulnerability of surface wa-

ter and streams to anthropogenic changes.  

It is important to mention that there are limitations in using RF models in water quality data analysis. For in-

stance, extrapolation beyond the training data requires implementing techniques or procedures to mitigate the 

risks associated with extrapolation, such as using appropriate model validation methods, considering uncer-



tainty estimates, and potentially applying domain knowledge to make informed decision. Additionally, the se-

lection of relevant variables significantly impacts model performance. A comprehensive elucidation of fitting 

methodologies is imperative to avoid inaccuracy in drawing predictive conclusions. 

Future work should extend this study to other regions to verify the effects of climate on the relationships be-

tween hydrometeorology and water quality. Additionally, finer temporal resolutions can be considered to inves-

tigate rates of hydrological response, especially in watersheds of different sizes. Additional water quality indica-

tors like pH and nitrate concentration would help generalize the results of this work and make the proposed 

analyses more useful for water quality management. Finally, extreme weather events should be analyzed to un-

derstand how they impact model outcomes.  
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